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ABSTRACT

In many situations, parallel and distributed simulation

is a well-suited approach to overcome performance as

well as capacity limitations of complex simulation mod-

els. However, if distributed simulation runs take hours

or days for termination or if distributed simulation is

applied to safety critical domains such as e.g. military

decision making, it is not acceptable that a failure in a

single process, processing element, or communication link

stops the whole simulation experiment. Fault tolerance

mechanisms which are popular in general purpose dis-

tributed computing are not common in the special case

of distributed discrete event simulation. In this work, we

structure the necessary dependability requirements and

point out approaches how they can be met. Two direc-

tions are discussed: the specialization of fault tolerance

mechanisms from general purpose distributed computing

to distributed simulation and the adaptation of special

mechanisms of distributed simulation to support fault tol-

erance. Special attention is also paid to approaches in-

creasing the dependability of implementations of the High

Level Architecture (HLA) and to possibilities to extend

the HLA to support fault tolerance mechanisms for HLA

federates and federations.

1 INTRODUCTION

Today, simulation as a tool for planning, decision mak-

ing, scienti�c analysis, education and training is ubiqui-

tous. Many simulation models require long computation

times and need high amounts of memory, leading to re-

strictions with respect to the size or with respect to the

level of detail of the model. Distributed simulation is a

means to overcome such limitations. However, most exist-

ing architectures for distributed simulation do not include

mechanisms for fault tolerance. I.e., in conventional dis-

tributed simulation architectures, the failure of a single

process, processing element or communication link may

stop the whole simulation experiment. Depending on the

application domain this may not only be tiresome, but

missing fault tolerance may also lead to low cost e�ective-

ness of distributed simulation or even to dangerous and

life-critical situations. Consider for example distributed

simulation as a decision tool in military operations. In

that application domain, highly dependable simulation

systems are required. If a simulation run fails, because

the distributed simulation architecture lacks fault toler-

ance, this could reduce the amount of available informa-

tion for life-critical decisions. Or as another example,

consider scienti�c simulation experiments that may take

several days even on a distributed environment. If a fail-

ure in one of the processing elements causes a halt of

the whole simulation experiment, this may increase the

computational cost of the experiments excessively.

Fault tolerance (FT) in general distributed comput-

ing as well as several special application domains such

as e.g. distributed databases is a well-known and pop-

ular issue. However, in the domain of distributed

discrete event simulation, only little e�ort has been

made in this direction. Exceptions include the work

of Agrawal and Agre about replicated objects in time

warp [Agrawal and Agre, 1992], where simulation objects

are replicated to improve performance as well as FT of

time warp simulations. Another optimistic fault tolerant

simulation approach is presented by Damani and Garg

[Damani and Garg, 1998], based on checkpoints on sta-

ble storage and extension of the anti message mechanism

to handle failure recovery. However, these approaches

present solutions for specialized situations, and as far as

we know, no general discussion of the problems and possi-

ble solutions arising from combination of distributed sim-

ulation and FT mechanisms has been presented yet. For

example, both works only consider data recovery, whereas

fault detection and load redistribution due to failures is

not discussed. Furthermore, also the High Level Archi-

tecture (HLA) for distributed simulation, currently be-

coming popular especially in military simulation (but not

restricted to that domain), does not include a formal fail-

ure model [Dahmann, 1999]. This is true in two respects:

�rstly, some processes of current implementations of the

HLA's Run Time Infrastructure (RTI) are centralized and

are thus bottlenecks with respect to FT. Secondly, the

HLA itself o�ers no support for FT of simulation feder-

ates of an HLA federation.

In this paper, we structure the basic FT requirements

(i.e. fault detection, data recovery, load redistribution)

and discuss how (a) existing fault tolerance mechanisms

from general distributed computing can be applied to the

special case of distributed simulation, and (b) existing

mechanisms in distributed simulation can be adapted to



support FT. However, this paper presents a structured

view of the problem and possible solution approaches.

Application experiences of these approaches are not in-

cluded in this work. In a recently started project at the

institution of the authors an HLA-based prototype imple-

mentation of a FT distributed simulation is developed.

This prototype will be accompanied by performability

models to allow experimental as well as analytical eval-

uations of various approaches. Results in this directions

will be reported in future works.

The paper is organized as follows. In Section 2, the

general framework of our discussion is laid out. In the

sequel, the three main requirements for FT are discussed

one by one: in Section 3, issues of fault detection are con-

sidered, Section 4 discusses possibilities to allow recovery

from failures, and eventually necessary redistribution of

load in case of permanent failures is considered in Sec-

tion 5. Special attention is paid to the HLA and how

it can be improved with respect to FT. These issues are

taken up in Section 6. Section 7 presents a summary of

the paper including plans for future work.

2 GENERAL FRAMEWORK

We restrict our considerations to discrete event-driven

simulation models which are distributed in the lines

of a logical process architecture (see for example

[Ferscha, 1996]) with message based communication and

asynchronous simulation time.

2.1 Logical Process Simulation

The distributed logical process architecture which serves

as a bases for our discussion is depicted in Figure 1. In

this logical process architecture, the simulation model is

partitioned into spatial regions. A logical process (LP)

consists of a model region (R), a simulation engine (SE),

and a logical process communication interface (LPCI).

LPs communicate via messages which are handled by the

LP's LPCI. The LPs are mapped on processing elements

(PE). Such PEs may be processors of a parallel archi-

tecture, nodes in a LAN cluster of workstations, or even

computers communicating over the internet. On every

PE, a PE communication system (PECS) handles the

message transfer between its LPs. Message transfer be-

tween LPs located on di�erent PEs (external messages)

is handled via the PE communication interface (PECI),

which is provided by the operating system of each PE.

The communication among PEs is provided by an inter-

PE-communication system (IPECS), such as e.g. the com-

munication system of a hypercube operating system, a

LAN, or the internet.

We refer to the process of �nding appropriate sub-

regions of the model as partitioning. The distribu-

tion of LPs to PEs is referred to as mapping. A key

issue in distributed discrete event simulation (DDES)

with asynchronous virtual times is the need for appro-

priate simulation protocols to guarantee the absence of

causality violations, and thus guarantee that DDES pro-

duces the same results as sequential simulation. Since

a description of synchronization protocols such as the

conservative [Chandy and Misra, 1979] or the optimistic

[Je�erson, 1985] approaches would exceed the scope of

this contribution, in the sequel we suppose that the reader

is familiar with these issues. A detailed introduction can

be found for example in [Ferscha, 1996].

2.2 Fault Types

Di�erent types of failures may require di�erent types of

reactions and thus di�erent FT requirements. We distin-

guish between so-called Byzantine failures and fail-stop

failures. In a fail-stop failure, a process stops produc-

ing results. However, as long as it produces results they

may be assumed to be correct. A situation in which in-

correct results are produced is called a Byzantine fail-

ure. We restrict our analysis to the case of fail-stop fail-

ures. Byzantine failures would require additional failure

detection and recovery mechanisms such as e.g. replica-

tion with distributed voting.

In this work, three basic types of fail-stop failures are

considered: (a) failures of a logical process, (b) process-

ing element failures, and (c) communication link failures.

In the case of a PE failure, all LPs located on that PE

are stopped. In the case of a communication link failure,

the a�ected PEs may produce results, but messages can-

not be communicated to external LPs. Failures of type

(b) and (c) may either be temporary or permanent. Fur-

thermore, failures of any type may be controlled (e.g. the

shutdown of a workstation) and thus be known in advance

or uncontrolled.

2.3 Dependability Requirements

With a few exceptions (e.g. [Agrawal and Agre, 1992],

[Damani and Garg, 1998]), DDES architectures do not

provide support for FT. Three mechanisms have to be

provided to allow appropriate reaction on various types

of failures.

Fault detection: Appropriate reaction to failures is

only possible if such failures are recognized including

their type within reasonable time.

Data recovery: In the case of a failure, local data may

be lost. Mechanisms that allow the recovery of such

data have to be provided.

Load redistribution: In many cases (such as e.g. the

non-temporary breakdown of a PE), LPs have to be

redistributed or remapped among the PEs after a

failure.

In general purpose distributed computing, FT mecha-

nisms are commonly used. Two strategies to adapt DDES

to fault tolerance are available and will be discussed:

1. Application of general purpose FT methods to the

special case of DDES.

2. Adaptation of techniques and mechanisms of DDES

protocols such that they additionally support FT.

Examples where the second strategy may be used

include the extension of optimistic checkpointing tech-

niques to support data recovery or the use of dynamic

load balancing mechanisms to manage load redistribu-

tion after failures. In both cases, the main problems in

DDES such as communication overhead or memory con-

sumption have to be given special consideration. In the



Figure 1: Distributed logical process simulation architecture.

following sections, the three basic dependability require-

ments and how they may be met in the special case of

DDES are discussed in more detail.

3 FAULT DETECTION

The �rst dependability requirement we focus on is fault

detection. If a failure is neglected this may lead to disas-

trous consequences as discussed in Section 1. Some e�ects

of failures when there is no failure detection are shown in

[Chabridon and Gelenbe, 1995]. To allow appropriate re-

action to failures, mechanisms have to be implemented

which can detect failures of various types.

3.1 Fault Detection Techniques

In distributed systems, FT and consequently fault detec-

tion mechanisms are commonly used. A DDES can be

seen as a special distributed system and therefore it may

be helpful to have a look at general fault detection tech-

niques in distributed systems. In the sequel, we pick up

some techniques which are useful for fault detection in

the distributed logical process architecture for DDES.

A traditional method to cope with the prob-

lem of fault detection in distributed systems is that

the processes send heartbeats to a process monitor

[Avritzer and Weyuker, 1996]. If a heartbeat is not ac-

knowledged within a speci�ed time the process is said to

be dead.

Becker proposes two methods for fault detection, where

the processes are kept under surveillance [Becker, 1991].

These are:

� Central crash detection,

� Distributed crash detection.

In the central crash detection scheme, a crash detection

manager observes the other processes with the help of

periodically multicasting messages. If the crash detection

manager fails, a new one has to be chosen. The basic

idea in the distributed crash detection scheme is to build

a virtual token ring. A token is given from one process

to another. A crash is detected when the expected token

does not arrive within a speci�ed time interval. If the

token is lost (and maybe the virtual ring is broken) a

ring manager has to be elected to reorganize the virtual

ring and to recreate a new token. In both techniques

the primary issue is an election problem. In the central

crash detection approach, eventually a crash detection

manager has to be elected, whereas in the distributed

crash detection scheme, a ring manager (to build a virtual

ring where each process proves its neighbor) has to be

elected. Two algorithms to solve these election problems

can be found in [Becker, 1991].

Monitoring techniques can be used to prevent failures

by identifying processes that appear to crash with high

probability in the near future. Using the so-called reju-

venation mechanism [Huang et al., 1995], such processes

can be restarted in a controlled way avoiding failures of

the a�ected processes or PEs. For example, such an iden-

ti�cation approach based on fault signatures is presented

by Avritzer and Weyuker [Avritzer and Weyuker, 1996].

3.2 Fault Detection in DDES

In DDES, LPs play the role of the process monitor, crash

detection manager or ring manager. Messages similar to

NULL-messages, known from the conservative synchro-

nization protocol, can serve as heartbeats. Let us consider

what conditions must be ful�lled to detect the three basic

types of fail-stop failures re
ected in Section 2.2.



Failures of logical processes: We distinguish be-

tween detection of LP failures (a) on the same PE and

(b) on di�erent PEs. In the �rst case, both versions, the

centralized and the distributed one, can be applied. In

the latter case every PE may select a representative which

then communicates with the representative of each other

PE. An evident choice for the representative is the crash

detection manager or the ring manager of each PE. If a

representative detects a LP failure on its PE, it broad-

casts a message to the other representatives. All the rep-

resentatives may again select a centralized crash detec-

tion manager or may build a virtual token ring. Note

that for this mechanism a reliable communication system

is assumed.

Processing element failures: Again, LPs acting as

representatives of a PE communicate with each other. If

a heartbeat of such a LP is not acknowledged, the PE

is decided to be dead. The election of a representative

within a PE, for example the crash manager or ring man-

ager, guarantees that at least one LP is working on a non-

faulty PE. Consequently the representative will indicate

whether the PE is alive or not. A reliable communication

system is required here, too.

Communication link failures: To detect communi-

cation link failures more e�ort has to be made than to

detect LP or PE failures. We restrict our considerations

to communication link failures in the IPECS. Communi-

cation link failures in the PECS are left to be tolerated by

the operating system of the PE. The diÆculty stems from

the situation that the reason for a missing heartbeat from

a representative may either be a PE failure or the heart-

beat may be lost via the communication system. Thus a

representative from PE PEi (denoted by LPRi ) has to do

the following. If it does not receive the heartbeat of the

observed representative LPRk it has to send a message to

a third representative LPRl asking for a heartbeat from

LPRk to LPRl . If LPRl receives a heartbeat from LPRk
it is sure that a communication link failure between PEi

and PEk occurred. Otherwise this procedure has to con-

tinue until all links between PEk and the other PEs are

tested. Since all these communication links are declared

to be failed, the PE PEk is no longer reachable or more

realistically the PE is dead.

4 DATA RECOVERY

Two techniques to allow recovery of simulation data are

checkpointing and replication. Checkpointing techniques

require the availability of stable storage. Stable storage

is assumed to survive processor or communication fail-

ures and thus it is always accessible. Stable storage is

an abstraction and may be a stable disk or the volatile

memory of another LP. If in the latter case the recovery

data (checkpoints and logged messages) of an LP LPi are

sent to the memory of just one other LP, only one fail-

ure (with the loss of the data of LPi as a consequence)

can be tolerated. To tolerate an arbitrary number of fail-

ures, either a reliable storage system has to be used or

the recovery data have to be stored on the local memory

of each other LP. For the considerations of Section 4.1 it

is assumed that stable storage is available and therefore

the recovery data of an LP are accessible at any point in

time. However, implementation of stable storage induces

Figure 2: Global checkpoint and recovery line.

high additional computation as well as communication

overhead.

4.1 Recovery Techniques

Checkpointing. First we give some de�nitions. A sta-

ble checkpoint is a snapshot of the state of a process,

saved on nonvolatile storage to survive process failures

[Wang, 1995]. In this work we use the term stable check-

point to distinguish checkpoints made for FT purposes

from checkpoints made to allow rollbacks in time warp

simulation. We emphasize the fact that a stable check-

point survives process failures. We denote ci;x as the xth

stable checkpoint (x is called the checkpoint index) of the

process Pi (i is the process id). Ii;x is de�ned as the

stable checkpoint interval between the stable checkpoints

ci;x�1 and ci;x. A local checkpoint is a stable checkpoint

of one speci�ed process, whereas a global checkpoint is a

set of local checkpoints, one of each process, such that

the system forms a consistent state. A global check-

point is said to be consistent if no message is sent after

a local checkpoint ci;x and received before another local

checkpoint cj;y (ci;x and cj;y belong to the global check-

point) [Wang, 1995]. This implies that after a failure a

distributed application can be restarted from this global

checkpoint [Baldoni et al., 1997]. The most recent global

checkpoint is called the recovery line (see Figure 2, ar-

rows indicate messages). However, the determination of

a recovery line is in itself a non-trivial task. An exam-

ple for an approach to that problem which is based on a

rollback-dependency graph is proposed in [Wang, 1995].

Elnozahy et al. give a survey of checkpointing

techniques where three classes are proposed, namely

uncoordinated, coordinated, and communication in-

duced checkpointing [Elnozahy et al., 1996]. In un-

coordinated checkpointing techniques, the processes

take the (local) checkpoints independently. The

main problem of uncoordinated checkpointing tech-

niques is the possibility of the so-called domino e�ect

(see for example [Upadhyaya and Ranganathan, 1994] or

[Elnozahy et al., 1996]). Unfortunately, in the case of the

domino e�ect, a huge amount of the calculations may be

lost. A solution to overcome the domino e�ect is that the

LPs take their checkpoints in coordination with the other

LPs with the aim of a global checkpoint. The drawbacks

of coordinated checkpointing are the loss of the LP au-

tonomy and a higher communication overhead. Another

way to avoid the domino e�ect is communication induced

checkpointing. One method in communication induced

checkpointing is the index based variation (see for ex-



ample [Baldoni et al., 1997]), where consistency between

checkpoints of the same index is guaranteed.

Instead of solely taking checkpoints, another technique

for data recovery in distributed systems is the message

logging technique. In this case the processes store mes-

sages and non-deterministic events in addition to the

checkpoints such that it is possible to replay the calcu-

lations since the last checkpoint. Therefore this method

has to be used in the case of interactive distributed sim-

ulation because user interactions are non-deterministic

events. Furthermore, this method is not subject to the

domino e�ect. Message logging techniques can be divided

into three categories: pessimistic, optimistic and causal

[Alvisi and Marzullo, 1998].

Replication. Replication is the maintenance of on-

line copies of data and other resources. It is a key to

achieve good performance, high availability and FT in

distributed systems [Coulouris et al., 1994]. The main

problem in replication techniques is keeping the multiple

replicas in a consistent state.

It can be distinguished between active and passive

replication [Shi and Belford, 1989]. In the passive repli-

cation scheme, also called the primary-backup approach,

a primary replica executes the computations and then

sends state copies to the backup replicas. If the primary

replica fails, one of the backup replicas has to take over.

In the active replication scheme all replicas act indepen-

dently and perform the computations concurrently.

Another replication technique, especially popular in

the domain of reliable storage systems, which may be ap-

plied to DDES is the RAID (Redundant Arrays of Inex-

pensive Disks) scheme. An introduction to RAID can be

found in [Patterson et al., 1989]. The main disadvantage

of these techniques is that such strategies can tolerate

only one failure. If two processes fail at the same time,

the system can not recover the lost data. Therefore after

a failure the data have to be reclaimed before another

failure occurs. In [Plank, 1996], coordinated checkpoint-

ing with the help of RAID techniques is proposed. Two

RAID strategies are applied, disk mirroring and parity

disk (level 1 and level 5 RAID, respectively). The reason

to use level 5 RAID is to create a parity checkpoint which

is de�ned as the bitwise exclusive-or of each local check-

point. If a LP fails, its checkpoint can be constructed

from this parity checkpoint. Therefore the overhead in

the resource usage, caused by checkpoints and replica-

tions, can be reduced with the help of RAID strategies.

4.2 Recovery Techniques in DDES

In DDES, the data structures for conservative and op-

timistic simulation are di�erent. To transfer ideas from

general checkpointing techniques to DDES, it must be

considered what data is necessary for checkpointing. In

a conservative protocol a stable checkpoint of an LP con-

sists of the state variables, the event list and the virtual

time of an LP. In an optimistic protocol additionally the

input and output queues of the sent and received mes-

sages have to be stored to guarantee the capability to

roll back. Note that in time warp local checkpoints are

taken anyway. Therefore the only e�ort that has to be

made with respect to FT is to periodically transfer check-

points to stable storage. In the coordinated checkpoint-

ing scheme the LPs have to coordinate the checkpoints

to build a global checkpoint, i.e., a consistent state. If a

LP LPi fails, the LPs depending on LPi have to roll back

to the most recent available global state. Another advan-

tage of the coordinated approach is that all simulation

data before the recovery line are no longer important and

can be discarded. In that sense, the determination of a

recovery line in coordinated checkpointing is analogous to

the computation of global virtual time (GVT) in DDES.

Thus, GVT computation or approximation techniques

such as e.g. presented in [Tomlinson and Garg, 1993] and

[D'Souza et al., 1994] can be used for the combined com-

putation of both, GVT as well as recovery lines.

To apply message logging protocols in DDES, the LPs

store the incoming and outgoing messages on stable stor-

age. Pessimistic and causal logging in DDES immediately

lead to an overhead, because in DDES message activity

is usually high [Damani and Garg, 1998].

A signi�cant amount of research has been done to

determine optimal checkpoint intervals in optimistic

DDES. An overview of checkpointing considerations for

optimistic DDES including an experimental compar-

ison can be found in [Fleischmann and Wilsey, 1995].

Analytical models that compute optimal checkpoint-

ing intervals (see for example the comparison of

copy state saving and incremental state saving in

[Cleary et al., 1994] or the adaptive approach presented

in [R�onngren and Ayani, 1994], where the length of the

checkpointing interval is determined at runtime) have to

be extended by considerations about stable checkpoints.

This implies a major change in such models since (a) fail-

ures introduce an additional cost factor and (b) check-

pointing to stable storage introduces another type of

checkpoint. Thus, models must not only determine an

optimal checkpointing interval, but a checkpointing strat-

egy which considers an optimal mix of both, local volatile

checkpoints as well as stable checkpoints has to be found.

Replication of LPs is another idea in DDES to achieve

FT. In the passive scheme only the primary LP executes

the events and sends the actual state to its back-up repli-

cas. To tolerate a PE crash, the back-up LPs must lie

on another PE. When the back-up LPs are informed of

the failed primary replica, one of the backup LPs takes

over the role of the primary LP. In the active scheme, sev-

eral LPs, perhaps again on di�erent PEs, will execute the

events independently. This approach is only applicable

if it can be guaranteed that the active replicas produce

exactly the same simulation results. Active replication

needs more processing power, whereas in passive replica-

tion the message activity is high. Thus, if in a DDES

the message overhead is critical, as in the conservative

protocol, the active replication would be more preferable.

On the other hand, if memory and processing power is

the primary bottleneck, as typically in time warp simu-

lations, passive replication should be considered. RAID

techniques such as described by [Plank, 1996] can be at-

tractive in memory consuming simulations, because the

level 5 RAID strategy is known to be memory eÆcient as

compared to replication.



5 LOAD REDISTRIBUTION

After a permanent breakdown of a PE, the LPs assigned

to that PE have to be mapped on other available PEs.

If a temporary breakdown is experienced, the trade-o�

between the blocking time during the breakdown and the

overhead due to LP redistribution has to be considered.

If the faulty PE can be restarted immediately, it may

be more eÆcient to accept the simulation delays due to

the temporary breakdown. On the other hand, if the PE

restart takes more time (e.g. reboot of a workstation) the

cost of waiting for that PE will exceed the cost for load

redistribution.

In the case of controlled failures (e.g. the shutdown of

a workstation which may be reported to the simulator in

advance), load redistribution may be the only necessary

reaction. In the case of an uncontrolled failure, successful

fault detection and data recovery are preconditions to

load redistribution.

5.1 Partitioning and Mapping of LPs

Since the highest level of detail for our discussion is the

LP level, we do not consider changes w.r.t. the partition-

ing of the simulation model into submodels simulated by

the LPs. Thus, an eventually necessary load redistribu-

tion is actually a re-mapping of the failed PE's LPs to

functioning PEs. However, to allow a balanced load re-

distribution after a failure of a PE, a partitioning strategy

which produces signi�cantly more LPs than PEs would be

preferable.

For models of several application domains, specialized

partitioning strategies have been developed that are opti-

mized for eÆcient distributed simulation. They produce

model regions which can be mapped to PEs in a way that

decreases communication overhead, reduces the number

of rollbacks in time warp simulation, or maximizes looka-

head for conservative simulation. Some examples of such

techniques include hierarchical partitioning for time warp

simulation presented by Kim et al. [Kim et al., 1998], or

the mapping approach proposed by Som and Sargent

[Som and Sargent, 1993]. However, a problem with load

redistribution after a PE failure is that optimized struc-

tures provided by such specialized mapping algorithms

may have to be broken when the LPs of the failed PE are

moved to other PEs.

5.2 Using Static Load Management

Static strategies perform the partitioning and mapping

operations before the simulation start and do not in-

tend changes in the load distribution during the runtime

of the simulator. Thus, one may think of static map-

ping approaches as being unsuitable for being used in FT

mechanisms. However, static partitioning and mapping

algorithms, such as e.g. that described by Boukerche and

Tropper [Boukerche and Tropper, 1994], could be used

to prepare several mappings for a restricted number of

failure situations: consider a situation where originally,

N PEs are available. If there is reason to assume that

the total number of PEs that may eventually fail during

the simulation run is rather small, static mappings for

N;N � 1; : : : ; N �K PEs may be produced in advance,

where K denotes the maximum number of failed PEs. In

the case of a failure, these mappings may be used to re-

distribute the LPs. However, it has to be noted that in

the change over from a mapping for N PEs to a mapping

for N � 1 elements, eventually not only the LPs of the

failed PE may have to be moved. Thus, a static mapping

strategy used for that purpose should be optimized in a

way that mappings for varying numbers of PEs di�er only

slightly.

5.3 Dynamic Load Management

As opposed to static load management, load distribution

during runtime is the key component of dynamic load bal-

ancing techniques. Thus, they can directly be applied to

redistribute LPs originally assigned to a meanwhile failed

PE. Most load balancing approaches for general purpose

distributed computing are not appropriate to be used for

DDES, because they do not take into account proper-

ties of the respective DDES synchronization protocols.

However, general approaches that allow the considera-

tion of close neighbors and aÆnity of LPs to certain PEs

may be used for our purpose. Such an approach for the

reassignment of tasks from a failed PE is described in

[Varvarigou and Trotter, 1994]. Methods specialized for

load balancing of distributed simulators (see for example

[Schlagenhaft et al., 1995], [Choe and Tropper, 1999], or

[Deelman and Szymanski, 1998]) can be used for the LP

redistribution after a failure. Using such an approach,

a failed PE may be considered as being completely over-

loaded, i.e. all its LPs have to be reassigned. Additionally,

proactive strategies that monitor process behavior and

take into account di�erent failure probabilities at di�er-

ent PEs to assign critical processes to \save" PEs may be

considered.

6 HLA FAULT TOLERANCE

The High Level Architecture (HLA), developed by the

U.S. Defense Modeling and Simulation OÆce (DMSO)

provides a general software architecture for distributed

simulation [HLA]. The HLA is de�ned by its three com-

ponents: the HLA rules, the object model template, and

the interface speci�cation. Its primary purpose is to

serve as a tool for the common execution of a compos-

able set of interacting simulations with the goal of in-

creasing model reusability. However, the Run Time In-

frastructure (RTI), which is the implementation of the

HLA interface speci�cation, can also be used as a build-

ing block for parallel simulation on high-performance

computers [Steinman et al., 1999]. Unfortunately, in its

current state, the HLA has no formal failure model

[Dahmann, 1999]. This is of special signi�cance since the

most important application domain for the HLA is mil-

itary simulation, where highly dependable systems may

be required, especially if simulation is used as a decision

tool in military operations. To increase the FT of HLA-

based simulation, two extensions are desirable: (i) the

RTI and its supporting processes have to be implemented

in a highly dependable way, (ii) services that support FT

of HLA federates should be included in the HLA speci�-

cation.



6.1 FT RTI Implementation

There are at least two dependability bottlenecks in the

current RTI implementations: the RTIexec, as well as

the FedExec processes are located on a single node and

operate without replication. The RTIexec process is the

startup process of an HLA federation. Every HLA feder-

ate has to register via the RTIexec process. The FedExec

process is the main administration unit of the RTI: it han-

dles all communication among federates, it is responsible

for object identi�cation, and it manages ownership of ob-

jects and attributes. I.e., without the FedExec process,

interaction between HLA federates is impossible. To im-

prove the dependability of a distributed simulation based

on the HLA, these two processes could be replicated and

their data should periodically be saved to stable storage.

A fault detection scheme should be provided in the RTI

implementation including a rollback mechanism which al-

lows continuation of computation starting from the last

stable checkpoint before failure.

6.2 FT Support for HLA Federates

Including obligatory FT capabilities in the HLA rules

may be too restrictive. However, the interface speci�-

cation, which describes both, the services provided to the

federates by the RTI and the services provided to the

RTI by the federates could be extended by services sup-

porting FT mechanisms. For example, such services may

include fault detection services, services managing repli-

cation of federates and federate respawn after failure, or

the extension of the RTI save/restore services to support

periodic checkpointing to stable storage and automated

recovery after failures. A detailed discussion of options

for a FT-HLA is a subject of future work.

7 CONCLUSIONS

With few exceptions, fault tolerance has not been a major

issue in the parallel and distributed simulation commu-

nity. However, safety as well as eÆciency considerations

give rise to the desire for dependable distributed simula-

tion software architectures. In this paper, we have struc-

tured the requirements for fault tolerant distributed dis-

crete event simulation. The three major issues fault de-

tection, data recovery, and load redistribution have been

considered in more detail. Techniques to increase fault

tolerance in general purpose distributed computing have

been presented and their application to distributed dis-

crete event simulation has been discussed. Where appli-

cable, the adaptation of mechanisms which are already

part of certain distributed simulation protocols to sup-

port fault tolerance has been considered. Additionally,

special attention has been paid to approaches that could

increase dependability of HLA-based distributed simula-

tion.

Plans for future work point in several directions: in

a recently initiated project, combined models that rep-

resent performance, dependability, and cost aspects are

built to analyze and evaluate approaches proposed in this

paper. A choice of approaches will be implemented as ex-

perimental prototypes based on the HLA. As a result of

these research activities we plan to formulate concepts

for additional services in the HLA interface speci�cation

which support fault tolerance mechanisms for HLA fed-

erates and federations. Additionally, the application of

fault tolerance mechanisms to other variants of parallel

and distributed simulation, such as synchronized simula-

tion or simulation of continuous models may be consid-

ered.
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