
AN ARCHITECTURE FOR FAULT-TOLERANT

HLA-BASED SIMULATION

Clemens Berchtold� Marco Hezel

�ITIS e.V., email: berch@informatik.unibw-muenchen.de

Institut f�ur Technische Informatik

Universit�at der Bundeswehr M�unchen, D-85577 Neubiberg, Germany

Abstract

In this paper we present a new federate concept to sup-

port fault tolerance (FT) in HLA based simulations, the

so-called R-Fed (Replica Federate). The R-Fed may serve

as a concept for an architecture for a FT HLA-based sim-

ulation. The FT mechanism inside the R-Fed is based on

replication. The R-Fed contains two parts, the FT com-

ponents and the replicas, which are the replicated original

HLA federates. The FT components form the FT mecha-

nism and are described in detail. The replicas need modi-

�cations so that the messages are not directly sent to the

RTI but go a roundabout way over the FT mechanism in-

stead. For this purpose new Federate Ambassadors and a

new RTI Ambassador (FTAmb-RTI) are integrated. Fur-

thermore FT methods appropriate for the R-Fed are pro-

posed. Finally some scenarios of a FT simulation run are

explained to illustrate the entire concept of the R-Fed.

Keywords: Distributed simulation, fault tolerance,
High Level Architecture (HLA).

1 INTRODUCTION

The High Level Architecture (HLA) (see e.g. [DMSO,
Kuhl et al. 2000]) is de�ned as the standard for dis-
tributed military simulation. But also outside mil-
itary simulation the HLA has become popular. In
consequence the HLA is used as well in safety critical
simulations (military simulations) as in time and cost
intensive simulations (simulations in industry and sci-
enti�c simulations). A failure or crash of one single
component of the distributed simulation lead to the
loss of the overall function of the whole simulation sys-
tem. Therefore mechanisms for fault tolerance are im-
portant for increasing safety or decreasing costs. But
currently, the HLA does not include a formal failure
model [Dahmann 1999].

In this work we propose an architecture for HLA-
based simulations which is able to tolerate not only
fail-stop but also so-called Byzantine failures. In a
fail-stop failure a process crashes, but before it pro-
duces correct results. A situation in which incorrect
results are produced is called a Byzantine failure. In

our architecture the fault tolerance mechanism for
Byzantine failures is based on replication. The repli-
cas are compared and if there is a suÆcient great
di�erence between the replicas a Byzantine failure is
detected. The replicas may be di�erent implemen-
tations of the federate. For example a wrong model
implementation can be detected in this way. Thus in
addition this architecture may be used for veri�cation
of simulation models too.
In the literature there are only a few related works

concerning fault tolerance and distributed simula-
tion. A structured view of fault tolerance in paral-
lel and distributed simulation and possible solution
approaches are given in [L�uthi and Berchtold 2000].
Fail-safe PVM, an enhancement to PVM (Parallel
Virtual Machine) with regard to fault tolerance, is re-
ported in [Le�on et al. 1993]. In [OMG 2000] the fault
tolerant CORBA (Common Object Request Broker
Architecture) speci�cation is described.
The paper is organized as follows. Section 2 char-

acterizes the R-Fed, our concept for the architecture
for FT HLA-based simulation. In Section 3 we pick
out FT methods that may be appropriate for the R-
Fed. Scenarios of a FT simulation run to illustrate
the function of the R-Fed are depicted in Section 4.
And �nally conclusions are drawn in section 5.

2 ARCHITECTURE

We developed a new federate concept for FT, the R-

Fed (Replica Federate). The architecture of the R-
Fed is shown in �gure 1. A FT mechanism based on
replication is integrated into the R-Fed. The R-Fed
consists of the two main parts

� Replicas

� FT components

The replicas (Rep 1, Rep 2,..., Rep n) are the (vari-
ous) implementations of the original federate and may
be located on di�erent nodes in the distributed sim-
ulation environment. The FT components consist of
the FT Manager, the Property Manager, the Com-
pare Unit and the Fault Detector and have to be im-
plemented on one single node. We are now going to

 Fault−
Detector

Compare−
 Unit

Property−Manager

RTI

FT−Manager

FTAmb−Fed

 RTI−Amb

Rep_1

Rep_2

Rep_n

F
T

A
m

b−
R

T
I

F
T

A
m

b−
R

T
I

F
T

A
m

b−
R

T
I

Figure 1: R-Fed

explain these two main parts of the R-Fed in more
detail.

2.1 Replica

The modi�ed federate called replica and its modi-
�cations are drawn in �gure 2. Besides the stan-
dard federate implementation and the Federate Am-
bassador, save/restore functions and the FTAmb-RTI
(see later) are added. The replica must be able to
save and restore its simulation state. For this purpose
commands similiar to the standard HLA commands
federate save() and federate restore() may be
used.

 Standard

Implementation
 Federate

Save/Restore Functions

Federate−Ambassador
(connected to FT components)

FTAmb−RTI
(connected to FT components)

Figure 2: Replica

FTAmb-RTI In a normal HLA simulation the fed-
erates send the results (attribute changes, interac-
tions) directly to the RTI via the RTI-Ambassador.
The RTI services are called up by the federates via the
RTI-Ambassador. In our R-Fed concept the results of
the replicas have to be sent to the FT mechanism be-
fore. But this needs a modi�ed implementation of the
RTI-Ambassador for the replica. This new modi�ed
implementation is an interface to the FT mechanism
and we named it FTAmb-RTI. The FTAmb-RTI has
the following functions:

� Send results of the replicas to the FT Manager

� Receive and forward function calls

� Wait for error messages from the RTI

As the pendant to the FTAmb-RTI a new Federate
Ambassador (FTAmb-Fed) is implemented in the R-
Fed to forward the messages of the RTI to the FT
Manager.
Note: The communication between the FT Man-

ager and its replicas must not be done by the means
of the RTI, but may be done directly by the TCP/IP
protocol for example. Therefore a replica has to know
how to reach its FT-Manager, i.e. replicas need the IP
address and the port where the communication takes
place. This information is transmitted through the
FTAmb-RTI too.

2.2 FT Components

The fault tolerance components form the fault toler-
ance mechanism of the R-Fed. As mentioned above
these components have to lie on one single node. In
this subsection we describe the components and list
their functions.

Compare Unit The Compare Unit is generally re-
sponsible for the comparison and documentation of
the messages of the replicas. The Compare Unit re-
ceives directly from the FT Manager the messages and
the results of the replicas by the means of the imple-
mentation of the FTAmb-RTI. Then the functions in
detail are

� Write results in an internal data structure

� Watche time outs

� Compare results of the replicas

� Call the Fault Detector

The time outs criteria are de�ned by the time intervals
within the replicas have to answer to the broadcast of
the FT Manager. The time outs criteria are deter-
mined by the Property Manager. The Compare Unit
gets the value of the time interval from the Property
Manager and registers if the message of one replica
is within or out of this time limit. This registration
is written in the internal data structure. The results
of the replicas are compared bit-wise (for example).
Again, this comparison is put into the internal data
structure, which is then given to the Fault Detector.

Fault Detector The Compare Unit calls the Fault
Detector by sending the comparative results. Then
the Fault Detector makes decisions about

� Which replicas are correct or faulty

� Further FT procedure

Finally the decision is sent to the FT Manager. A
restart of a replica is an example of a further FT pro-
cedure. The rules for this decision making are looked
up in the con�guration �le of the Property Manager

(see next paragraph). An example for such a rule may
be: (Say) m replicas of the (say) n replicas (m � n)
have to be identical to declare that the m replicas are
correct.

Property Manager The parameters characteriz-
ing the FT mechanism are determined by the Prop-
erty Manager. These parameters are stored in a con-
�guration �le. The con�guration �le contains among
others

� Number of the replicas to be executed

� Number of the various implementations

� Failure criteria and FT methods

� How many replicas have to be restarted after a
failure

� Where are the checkpoints put

Various implementations of the federate are needed if
the R-Fed is used for veri�cation of the simulation sys-
tem. The information which replica represents which
implementation is also part of the con�guration �le of
the Property Manager.
Additionally the Property Manager is responsible

for the determination of the time outs, i.e. the Prop-
erty Manager calculates the time interval within the
results have to be sent by the replicas. A method
for the calculation of this time interval can be found
in [Echtle 1990].

FT Manager The FT Manager is the central unit
in the R-Fed that controls the FT mechanism. The
main functions of the FT Manager are

� Intermediate station between RTI and replicas

� Contain information about the replicas

� Ability to communicate with other FT Managers

The Fault Detector transmits the correct results of the
replicas and the information which replica is correct
to the FT Manager. The FT Manager forwards these
correct results to the RTI. On the other hand the FT
Manager broadcasts the messages of the RTI to all
replicas. For that function the FT Manager needs the
following informations about the replicas

� Number of replicas

� PID, node, IP address, port of the replica for
communication

Furthermore the FT Manager is capable to (1) start,
(2) terminate, (3) save and (4) restore the replicas on
its node and to (5) migrate a replica to another node.
As mentioned earlier the replicas may be located on
nodes di�erent to the \FT Manager's node". There-
fore the FT Manager must be able to start, terminate,
save and restore its replicas on a node of other FT
Managers.

3 FT METHODS

In this section we give a short overview of FT methods
appropriate for the concept of R-Fed. We distinguish
between FT methods for replica failure and for FT
Manager failure. The replicas may crash or produce
incorrect results whereas the FT Manager may only
crash. In consequence the FT methods are di�erent.
The mechanism to tolerate replica failures is based on
replication and the mechanism to react on crashes of
a FT Manager may base on checkpointing.

3.1 Failure of Replica

First we examine the possible FT methods to react
on Byzantine Failures, i.e. some of the components
in the distributed system produce incorrect results.
An appropriate FT mechanism is the replication of
the federates resulting in a number of replicas. The
problem to decide which replicas are \good" or \bad"
is generally known as the Byzantine Generals Prob-

lem [Lamport et al. 1982]. In the R-Fed the good
replicas may be identi�ed by majority voting. So if
at least half of the replicas' results are identical they
are assumed to be correct. It has to be mentioned
that at least 2N +1 good replicas can tolerate N bad
replicas.
Methods of replication can be divided into two main

schemes, the passive and the active scheme (see for ex-
ample [D�efago et al. 1998]). In the passive variation
a primary replica sends periodically updates to the
backup replicas. In the active scheme all replicas act
concurrently. Thus for the R-Fed concept only the
active scheme is relevant.
To detect crashes of the replicas a method of time

outs may be applied. If a replica does not answer
within a prede�ned time interval it is declared to be
dead.

3.2 Failure of FT Manager

FT Managers only commit fail-stop failures, e.g.
if the node where the FT Manager lies crashes.
In [Becker 1991] crash detection techniques are de-
scribed where the processes are kept under surveil-
lance. A process is chosen to be the crash detection
manager and the other processes have to send period-
ically heartbeats to the crash detection manager. In
the R-Fed a FT Manager has to be chosen to play
the role of the crash detection manager. If the crash
detection manager fails a new one has to be chosen.
Thus the primary issue in this crash detection tech-
nique is an election problem (for which algorithms to
solve are given in [Becker 1991]).
If a FT Manager has crashed it must be recovered.

For this purpose checkpointing and rollback recovery
techniques may be applied. An overview of such tech-
niques can be found in [Elnozahy et al. 1996]. To re-
cover the failed FT Manager the elected crash detec-

tion manager has to restart the failed FT Manager
and has to bring the federation to a consistent check-
point. This can be done through a remote procedure

call (RPC). But it has to be emphasized that in this
case the HLA rules are insured, because the commu-
nication between the federates must be done solely
via the RTI.

4 FT SIMULATION RUN

Here we explain some scenarios of a FT simulation run
based on the architecture discussed in section 2. We
describe three situations to illustrate the FT mecha-
nism of the R-Fed. First we show the two directions
of the communication between the RTI and the repli-
cas and �nally the FT reaction in case of a failure is
explained.

4.1 Communication Between RTI and

Replicas

Replicas ! RTI The transmission of messages
from the replicas to the RTI is drawn in �gure 3. The

Compare−
 Unit

Property−
Manager

 Fault−
Detector

 RTI−Amb

1

1

3

4
2

5

FT−Manager

1

RTI

Rep_1

Rep_2

Rep_n

F
T

A
m

b
−R

T
I

F
T

A
m

b
−R

T
I

F
T

A
m

b
−R

T
I

Figure 3: Message Transmission Replicas ! RTI

arrows indicate message transfer or function calls and
the dotted line between the Fault Detector and Prop-
erty Manager means \need information from". The
numbers close by the arrows are the sequence of the
steps of the FT mechanism.

First, the results of the replicas are sent via the FT
Manager to the Compare Unit. For this purpose the
FTAmb-RTI is responsible that the results are not di-
rectly routed to the RTI but over the FT mechanism.
The FT Manager can be seen as the corresponding
part of the FT mechanism because the communica-
tion interfaces are integrated in the FT Manager.

After the results of the replicas are sent to the Com-
pare Unit, the Compare Unit compares the results
(for example bit-wise) and registers an eventual time
out. This documentation (comparison and time outs)
is stored in an internal data structure which is given
to the Fault Detector. The Compare Unit calls up

the Fault Detector. Next, the Fault Detector evalu-
ates this documentation. The criteria for this evalu-
ation are found in the con�guration �le of the Prop-
erty Manager. Thus the Fault Detector looks up the
parameters for the FT methods in the Property Man-
ager before it makes the decision whether a failure is
detected or not. Furthermore the Fault Detector ad-
judges due to the con�guration �le in the Property
Manager what to do next, e.g. is a restart of a replica
necessary or not.

This decision (failure detection and further FT ac-
tions) is given to the FT Manager. If FT procedures
have to be done (if a failure is detected) the FT Man-
ager initiates the appropriate FT actions, e.g. termi-
nates a replica. And of course �nally, the FT Manager
forwards the correct results to the RTI via the RTI-
Ambassador.

RTI ! Replicas The transmission of messages
from the RTI to the replicas is shown in �gure 4. In

Compare−
 Unit

Property−
Manager

 Fault−
Detector

FT−Manager

Rep_1

Rep_2

Rep_n

1

2

3

3

3

RTI

FTAmb−Fed

F
ed

−A
m

b
F

ed
−A

m
b

F
ed

−A
m

b

Figure 4: Message Transmission RTI ! Replicas

contrast to the other direction of the message transfer
(replicas ! RTI) in this case the FTAmb-Fed plays
the role of the router instead of the FTAmb-RTI. The
function calls of the RTI must not directly be sent to
the replicas but to the FT Manager previously. The
FT Manager broadcasts the RTI messages to all its
replicas. The FT Manager is capable for this broad-
cast because it knows how to reach each replica, i.e. it
knows the number, PID, node, IP address and port of
each replica. The forwarded RTI messages are taken
by the Federate Ambassador (connected to the FT
components) of the replica.

4.2 Failure

In this subsection a scenario when a replica fails is
shown (cf. �gure 5). Let's assume that the FT Man-
ager and its replicas lie on di�erent nodes. In the �g-
ure the replicas Rep 1 and Rep 2 belong to FT Man-
ager(1). FT Manager(1) is on node(1) and its replicas
on node(2). FT Manager(2) is on node(2) too. Let's
assume further that the replica Rep 1 is incorrect.

Rep_1

Rep_2

Compare−
 Unit

Property−
Manager

RTI

FT−Manager(2)

 Fault−
Detector

FT−Manager(1)
Rep_1

2. send save signal

3. send start signal

4. send restore signal

1. send kill signal

Failure
detected

node(1) node(2)

1. kill Rep_1

2. save Rep_2

3. start new Rep_1

4. restore new Rep_1

Figure 5: Failure and Restart

The results of the replicas are directly sent by the
TCP/IP protocol through the appropriate ports to
FT Manager(1). The results are compared and conse-
quently the Fault Detector detects a failure due to the
failure criteria listed in the Property Manager. More-
over the Fault Detector determines that a restart of
Rep 1 is necessary (again due to the con�guration �le
in the Property Manager). These informations (fail-
ure of Rep 1 and required restart) are given to FT
Manager(1).

Now FT Manager(1) establishes contact with FT
Manager(2). FT Manager(1) sends a (1.) kill, (2.)
save, (3.) start and (4.) restore signal to FT Man-
ager(2). Having received the signals FT Manager(2)
does the following four steps in a sequel. First it kills
Rep 1. Then it saves the simulation state of Rep 2,
starts a new Rep 1 and restores the new Rep 1 with
the saved simulation state. In the following the two
replicas Rep 1 and Rep 2 simulate concurrently again.

5 CONCLUSION

There is no formal failure model in the HLA yet. We
developed a new federate concept, the R-Fed, to sup-
port fault tolerance. In the R-Fed as well so called
Byzantine failures as fail-stop failures can be toler-
ated. The FT mechanism is based on replication.
Several (various) implementations, called replicas, of
the original federate are integrated in the R-Fed. The
R-Fed consists of the FT components and the replicas.

The aim of the new concept was to maintain the
replica in its HLA-usual implementation and to build
a FT mechanism around. But the replica needs
some (little) modi�cations. These modi�cations are
a new Federate Ambassador, a new RTI Ambassador
(FTAmb-RTI) and save/restore functions. The new
ambassadors are responsible that the results of the
replica go a roundabout way over the FT mechanism.

This paper gives a short description of our concept
of the R-Fed. The R-Fed is the �rst attempt for an

architecture that supports fault tolerance within an
HLA-based simulation. A more detailed description
of the R-Fed and approaches for solutions to imple-
ment the R-Fed are worked out in [Hezel 2000]. How-
ever the technical implementation of the R-Fed, ex-
periments and practical experience are subjects for
future work.

References

[Becker 1991] T. Becker. Keeping Processes under Surveil-
lance. In IEEE 10th Symposium on Reliable Distributed
Systems, Pisa, Italy, Sept 30 - Oct 2, 1991, pp. 198-205,
IEEE Computer Society Press.

[Dahmann 1999] J.S. Dahmann. The High Level Architecture
and Beyond: Technology Challenges. Proceedings of the
13th Workshop on Parallel and Distributed Simulation
(PADS'99), Atlanta, Georgia, May 1-4 1999, pp. 64-70,
IEEE Computer Society Press.

[D�efago et al. 1998] X. D�efago, A. Schiper, N. Sergent. Semi-
Passive Replication. In IEEE 17th Symposium on Reli-
able Distributed Systems, West Lafayette, Indiana, Octo-
ber 20-23 1998, pp. 43-50, IEEE Computer Society Press.

[DMSO] The HLA web page of the U.S. Defense Modeling and
Simulation OÆce, 2000. http://hla.dmso.mil.

[Echtle 1990] K. Echtle. Fehlertoleranzverfahren. Springer-
Verlag Berlin, 1990. (in German).

[Elnozahy et al. 1996] E. Elnozahy, D. Johnson, Y. Wang. A
Survey of Rollback Recovery Protocols in Message Pass-
ing Systems. Technical Report CMU-CS-96-181, School
of Computer Science, Carnegie Mellon University, Pitts-
burgh, PA, USA, 1996.

[Hezel 2000] M. Hezel. Fehlertoleranz mit der High Level Ar-
chitecture (HLA). Studienarbeit UniBwM-IT 17/00, In-
stitut f�ur Technische Informatik, Fakult�at f�ur Informatik,
Universit�at der Bundeswehr M�unchen, Germany, 2000.
(in German).

[Kuhl et al. 2000] F. Kuhl, R. Weatherly, J. Dahmann. Cre-
ating Computer Simulation Systems: An Introduction to
the High Level Architecture. Prentice-Hall PTR. 2000.

[Lamport et al. 1982] L. Lamport, R. Shostak, M. Pease. The
Byzantine Generals Problem. ACM Trans. on Program-
ming Languages and Systems, Vol. 4, No. 3, July 1982,
pp.382-401.

[Le�on et al. 1993] J. Le�on, A.L. Fisher, P. Steenkiste. Fail-Safe
PVM: A Portable Package for Distributed Programming
with Transparent Recovery. Technical Report CMU-CS-
93-124, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, USA, 1993.

[L�uthi and Berchtold 2000] J. L�uthi, C. Berchtold. Concepts
for Dependable Distributed Discrete Event Simulation.
Proceedings of the 14th European Simulation Multi-
Conference 2000 (ESM2000), Ghent, Belgium, May 23-26
2000, pp. 59-66, SCS Europe.

[OMG 2000] Object Management Group. Fault Toler-
ant CORBA Speci�cation, V 1.0. OMG Document:
ptc/2000-04-04, 2000.
ftp://ftp.omg.org/pub/docs/ptc/00-04-04.pdf

